Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / June / Page 2

第6讲 克莱姆法则

  • Jun 30, 2017
  • Shawn
  • Linear Algebra
  • No comments yet
6.1 二元和三元线性方程组 • 二元线性方程组 ○ {█( a_11 x_1+a_12 x_2=b_1 ① @a_21 x_1+a_22 x_2=b_2 ②)┤ ○ ①×a_22−②×a_12⇒(a_11 a_22−a_21 a_12 ) x_1=b_1 a_22−b_2 a_12 ○ 若(a_11 a_22−a_21 a_12 )=0⇒无解或任意解 ○ 若(a_11 a_22−a_21 a_12 )≠0⇒x_1=(b_1 a_22−b_2 a_12)/(a_11 a_22−a_21 a_12 )=|■8(b_1&a_12@b_2&a_22 )|/|■8(a_11&a_12@a_21&a_22 )| ○ 同理可得x_2=(b_2 a_11−b_1 a_21)/(a_11 a_22−a_21 a_12 )=|■8(a_11&b_1@a_21&b_2 )|/|■8(a_11&a_12@a_21&a_22 )| ○ 一般将|■8(a_11&a_12@a_21&a_22 )|记作D ○ 将|■8(b_1&a_12@b_2&a_22 )|记作D_1,|■8(a_11&b_1@a_21&b_2 )|记作D_2 ○ 则方程组的解可以写成{█(x_1=D_1/D@x_1=D_2/D)┤ • 三元线性方程组 ○ {█(a_11 x_1+a_12 x_2+a_13 x_3=b_1 ①@a_21 x_1+a_22 x_2+a_23 x_3=b_2 ②@a_31 x_1+a_32 x_2+a_33 x_3=b_3 ③)┤ ○ 由行列式的性质∑_(i=1)^n▒〖a_ij A_it 〗={█(D, j=t@0, j≠t)┤,∑_(j=1)^n▒〖a_ij A_sj 〗={█(D, i=s@0, i≠s)┤ ○ 作 ①×A_11+②×A_21+③×A_31 以消去x_1 ○ ⇒(a_11 A_11+a_21 A_21+a_31 A_31 ) x_1+0x_2+0x_3=b_1 A_11+b_2 A_21+b_3 A_31 ○ {█((a_11 A_11+a_21 A_21+a_31 A_31 )=|■8(a_11&a_12&a_13@a_21&a_22&a_23@a_31&a_32&a_33 )|=D@b_1 A_11+b_2 A_21+b_3 A_31=|■8(b_1&a_12&a_13@b_2&a_22&a_23@b_3&a_32&a_33 )|=D_1 )┤⇒x_1=D_1/D ○ 同理可得 x_2=D_2/D,x_3=D_3/D 6.2 克莱姆法则 • 定理内容 ○ {█(a_11 x_1+a_12 x_2+…+a_1n x_n=b_1@a_21 x_1+a_22 x_2+…+a_2n x_n=b_2@⋮@a_n1 x_1+a_n2 x_2+…+a_nn x_n=b_n )┤,若 D≠0, 则解存在且唯一 ○ x_j=D_j/D, 其中D_j=|■8(a_11&…&b_1&…&a_n1@⋮&…&⋮&…&⋮@a_n1&…&b_n&…&a_nn )|┴j列 • 证明必要性 ○ ①×A_11+②×A_21+③×A_31+…得 ○ (a_11 A_11+a_21 A_21+…+a_n1 A_n1 ) x_1=b_1 A_11+b_2 A_21+…+b_n A_n1 ○ ⇒〖Dx〗_1=D_1 ○ 若 D≠0, x_1=D_1/D ○ 类似地 x_j=D_j/D, j=1,2…n • 证明充分性 ○ 要证明 a_11 D_1/D+a_12 D_2/D+…+a_1n D_n/D=b_1 ○ 即证明 a_11 D_1+a_12 D_2+…a_1n D_n=b_1 D ○ 左=[a_11 (b_1 A_11+b_2 A_21+…+b_n A_n1 )]+…+[a_1n (b_1 A_1n+b_2 A_2n+…+b_n A_nn )] ○ =b_1 (a_11 A_11+a_12 A_12+…+a_1n A_1n)=b_1 D=右 6.3 法则用于计算? • D=|a_ij |_(25×25) • 计算一个行列式需要多少次乘法: • 总共需要乘法次数= • 总共需要除法次数=25 • 总乘除法次数=25!×24×26+25 • 天河二号:33.86×〖10〗^15 次/秒 • t=(25!×24×26+25)/(33.86×〖10〗^15 )=9064年 • 故克莱姆法则的计算意义不大 6.4 法则的理论意义 • 对于一般的 n×n 线性方程组 ○ {█(a_11 x_1+a_12 x_2+…+a_1n x_n=b_1@a_21 x_1+a_22 x_2+…+a_2n x_n=b_2@⋮@a_n1 x_1+a_n2 x_2+…+a_nn x_n=b_n )┤ ○ D≠0⟺有且仅有一解 • 对于齐次线性方程组 ○ {█(a_11 x_1+a_12 x_2+…+a_1n x_n=0@a_21 x_1+a_22 x_2+…+a_2n x_n=0@⋮@a_n1 x_1+a_n2 x_2+…+a_nn x_n=0)┤ ○ D≠0⟺仅有零解(即解都为零) ○ D=0⟺有非零解 • 例1:{█(kx+y+z=0@x+ky−z=0@2x−y+z=0) 有非零解,求k┤ ○ |■8(k&1&1@1&k&−1@2&−1&1)|=|■8(k−2&2&0@3&k−1&0@2&−1&1)|=(k−2)(k−1)−6=0 ○ ⇒k=4 or k=−1 • 例2:平面直角坐标系内有两点(x_1,y_1 ),(x_2,y_2 ),求直线方程 ○ {█(ax_1+by_1+c=0@ax_2+by_2+c=0@ax+by+c=0)┤有非零解⇒|■8(x_1&y_1&1@x_2&y_2&1@x&y&1)|=0 • 推广 ○ 已知三点(x_1,y_1,z_1 ),(x_2,y_2,z_2 ),(x_3,y_3,z_3) ○ 则这三点确定的平面方程为|■8(x_1&y_1&z_1&1@x_2&y_2&z_2&1@x_3&y_3&z_3&1@x&y&z&1)|=0
Read More >>
  • 1
  • 2

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP