Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / October / 26 / Page 4

Math 375 – 9/26

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Inner Product • Definition (on real vector space) ○ An inner product on a real vector space V ○ is a real-valued function (x,y) with x,y∈V ○ for which: § (x+y,z)=(x,z)+(y,z), \ ∀x,y,z∈V § (tx,y)=t(x,y), ∀x,y∈V,and t∈R § (x,y)=(y,x), ∀x,y∈V § (x,x)≥0, ∀x∈V § (x,x)=0⇒x=0 • Definition (on complex vector space) ○ An inner product on a real vector space V ○ is a real-valued function (x,y) with x,y∈V ○ for which: § (x+y,z)=(x,z)+(y,z), \ ∀x,y,z∈V § (tx,y)=t(x,y), ∀x,y∈V,and t∈R § (x,y)=((y,x) ) ̅, ∀x,y∈V § (x,x)≥0, ∀x∈V § (x,x)=0⇒x=0 ○ Note: (x,ty)=((ty,x) ) ̅=t ̅(x,y) • Example in R2 ○ Let V=R2 ○ The following is an inner product for V § (x,y)=x_1 y_1+x_2 y_2+…+x_n y_n ○ Proof: (tx,y)=t(x,y) § (tx,y) § =(tx_1 ) y_1+(tx_2 ) y_2+…+(tx_n ) y_n § =t(x_1 y_1 )+t(x_2 y_2 )+…+t(x_n y_n ) § =t(x_1 y_1+x_2 y_2+…+x_n y_n ) § =t(x,y) • Example in ℂ^n ○ Let V=ℂ^n ○ The following is an inner product for V § (x,y)=x_1 (y_1 ) ̅+x_2 (y_2 ) ̅+…+x_n (y_n ) ̅ ○ Proof § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Counterexample in Rn ○ Let V=Rn ○ Whether the following is an inner product for V § (x,y)=x_1 y_1−x_2 y_2 ○ We need to check § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Counterexample in Rn ○ Let V=Rn ○ Whether the following is an inner product for V § (x,y)=x_1 y_1 ○ We need to check § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Example in Rn ○ Let V=Rn ○ The following is an inner product for V § (x,y)=(x_1+x_2 )(y_1+y_2 )+x_2 y_2 • Example in function space ○ V=C([a,b])={all continuous function on [a,b]} ○ The following is an inner product for V § (f,g)=∫_a^b▒f(x)g(x)dx, where a<b ○ We need to check § (f+g,h=(f,h+(g,h § (t⋅f,g)=t(f,g) § (f,g)=(g,f) § (f,f)≥0 § (f,f)=0⇒f=0 Length of Vector • Definition ○ √((x,x) )=‖x‖ is called the length of x ○ Note: (x,x)=‖x‖^2 • Cauchy Schwarz Inequality ○ (x,y)≤|x||y|, for all x,y∈V ○ Proof on page 16 Angle • Definition ○ If x,y∈V (x≠0,y≠0) ○ Then the angle between x,y is θ where ○ cos⁡θ=((x,y))/(‖x‖⋅‖y‖ ) • Note ○ Cauchy Schwarz Inequality implies ○ −1≤((x,y))/(‖x‖⋅‖y‖ )≤1 • Orthogonal ○ Vectors x,y are called orthogonal or perpendicular if ○ (x,y)=0 • Example ○ Given § V={all polynomials} § (f,g)=∫_0^1▒f(x)g(x)dx ○ Find the angle θ between f(x)=1 and g(x)=1 § ‖f‖=√(∫_0^1▒f(x)f(x)dx)=√(∫_0^1▒〖1^2 dx〗)=1 § ‖g‖=√(∫_0^1▒g(x)g(x)dx)=√(∫_0^1▒〖x^2 dx〗)=√3/3 § (f,g)=∫_0^1▒f(x)g(x)dx=∫_0^1▒xdx=1/2 § cos⁡θ=((x,y))/(‖x‖⋅‖y‖ )=√3/2 § ⇒θ=π/6
Read More >>

Math 375 – 9/25

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Span • L(S)={x∈V│■8(∃n∈N∃c_1,…,c_n∈R∃x_1,…,x_n∈S@x=c_1 x_1+…+c_n x_n )} Theorem • Statement ○ S⊆V is a subspace ⇔S=L(S) • Proof: S=L(S)⇒S⊆V is a subspace ○ Let s,t∈S, k∈R ○ Then s+k⋅t∈L(S) ○ L(S)=S⇒s+k⋅t∈S ○ ⇒S is closed under addition and scalar multiplication ○ Therefore S is a subspace of V • Proof: S⊆V is a subspace⇒S=L(S) ○ If T⊆V and T is a subspace, then L(S)⊆T ○ Setting T=S, we have L(S)⊆S ○ We also know that S⊆L(S) ○ So S=L(S) by definition of set equality Question 1 • Example of L(S∩T)≠L(S)∩L(T), where S,T⊆V ○ V=R2 ○ S={v_1,v_2 }, T={w_1,w_2 } ○ L(S∩T)=L(∅)={0} ○ L(S)=L(R)=R2 Question 2 • Let S_1,…,S_n be subsets of V • When is L(S_1 )∪…∪L(S_n ) a subspace? • L(S_1 )∪L(S_2 ) is a subspace ⇔L(S_1 )⊆L(S_2 ) or L(S_2 )⊆L(S_1 ) .02 ore I U. • Tu,
Read More >>

Math 375 – Homework 3

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 9/21

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Theorem 1.5 Theorem 1.6 • Statement ○ If {v_1…v_n} and {w_1,…,w_m} are bases for V, then n=m • Proof ○ Suppose n<m ○ w_1,…,w_m,w_(m+1)∈span{v_1…v_n } ○ ⇒{w_1,…,w_n,w_(n+1) } are linearly dependent by previous therom ○ ⇒{w_1,…,w_n,w_(n+1),…,w_m } are also linearly dependent ○ But {w_1,…,w_m} is linearly independet, because it a basis for V ○ So n<m is not true ○ Similarly the assumption n>m also leads to contradiction ○ Therefore n=m • Example ○ Given § f(x)=1+2x+x^2 § g(x)=x^2−4 § h(x)=2x−x^2 § k(x)=x−3 ○ Claim § There exist c_1,c_2,c_3,c_4∈R § such that c_1 f(x)+c_2 g(x)+c_3 h(x)+c_4 k(x)=0 § And at least one of c_1,c_2,c_3,c_4 is not 0 § V ={all polynomials of degree≤2} has basis {1,x,x^2} § f,g,h,k∈span{1,x,x^2 } § ⇒ f,g,h,k are linearly dependent Theorem • Statement ○ If V is a n-dimensional vector space ○ And v_1,…,v_m∈V are linearly independence with m<n ○ Then there exist v_(m+1),…,v_n∈V ○ Such that {v_1,…,v_n} is a basis for V • Outline of proof ○ span{v_1,…,v_m }≠V by the previous theorem ○ Choose v_(m+1)∈V such that v_m∉span{v_1,…,v_m } ○ Then {v_1,…,v_m,v_(m+1) } is also linearly independent ○ If m+1=n, then {v_1,…,v_m,v_(m+1) } is a basis for V ○ Or m+1<n, then repeat the previous steps
Read More >>

Math 375 – 9/20

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Why is span(∅)={0}? • 0 is the additive identity Question 2 • The basis of V={f∈P_n│f(0)+f^′ (0)=0}? • f(x)=a_0+a_1 x+a_2 x^2+…+a_n x^n • f(0)=a_0, f^′ (0)=a_1 • f(0)+f^′ (0)=0 • ⇒a_0=−a_1 • f(x)=a_1 (x−1)+a_2 x^2+…+a_n x^n • Therefore the basis of V is {x−1,x^2,…,x^n}
Read More >>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP