Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / October / 26 / Page 6

Math 375 – 9/12

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
What does a proof look like? • Assumptions • Conclusion • Proof Example 1 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=0} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is a vector space • Proof: Axiom 1 (∀x,y∈V:x+y∈V) ○ let z=(z_1,z_2,z_3 )=x+y=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ z_1+z_3=x_1+y_1+x_3+y_3=(x_1+x_3 )+(z_1+z_3 )=0 ○ ⇒z∈V Example 2 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=1} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is not a vector Space • Proof: ∃x,y∈V:x+y∉V Axiom 5 • To show Axiom 5 does not hold, • we have to prove for every O∈V, • there is an x∈V with O+x≠x Example 3 • Assumption ○ V={all functions f:[0,1]→R} • Conclusion ○ V is a vector space • Proof: Axiom 3(∀f,g∈V:f+g=g+f) ○ Let h=f+g and k=g+f ○ Both h and g has a domain of [0,1] ○ h(x)=f(x)+g(x)=g(x)+f(x)=k(x)
Read More >>

Math 375 – 9/11

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Field • A field F is a set together with 2 binary operations • +, × (− optional) that satisfies the following: ○ a+b=b+a ○ (a+b)+c=a+(b+c) ○ a×b=b×a ○ (a×b)×c=a×(b×c) ○ a×(b+c)=a×b+a×c ○ There is a special element O, such that a+O=a ○ There is a special element 1, such that 1×a=a ○ For all a, there is a b, such that a+b=0 ○ For any a≠O, there is a b, such that a×b=1 ○ Optional:1≠O, O≠1 • Example ○ F={0,1} ○ +≔{█(0+0=0@0+1=1@1+1=0)┤ ○ ×≔{█(0×0=0@0×1=0@1×1=1)┤ • Example ○ F={0,1,2} ○ +≔{█(0+0=0@0+1=1@0+2=2@1+1=2@1+2=0@2+2=1)┤ ○ ×≔{█(0×0=0@0×1=0@0×2=0@1×1=1@1×2=2@2×2=1)┤ Vector Space • A vector space V(over F) is a set together with binary operations • {█(+:V+V→V@×:F×V→V)┤, such that ○ F is a field ○ u+v=v+u, ∀u,v∈V ○ (u+v)+w=v+(u+w), ∀u,v,w∈V ○ There is a 0 and vector 0 ⃗, such that § ∀u,v∈V, ∀a,b∈F § u+0 ⃗=u § 0×u=0 ⃗ § a×0 ⃗=0 ⃗ § (a×b)×u=a×(b×u) § (a+b)×u=a×u+b×u § a(u+v)=a×u+a×v § u+(−1)u=(1+(−1))×u=0×u=0 ⃗
Read More >>

Math 375 – Homework 1

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 9/7

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Linear Space / Vector Space • A set of vectors • A set of numbers • Addition of vectors • Multiply vectors with numbers Zero Vector • There is a vector O such that for all vector x ○ x+O=x • Theorem ○ If O_1 and O_2 are both zero vectors, then O_1=O_2 • Proof ○ {█(O_1+O_2=O_1@O_2+O_1=O_2 )┤⇒O_1=O_2 Existence of Negative Vector • For every vector x, there is a vector y such that • x+y=0 • denoted as −x Multiplication with Numbers (Scalers) • x,y:vectors, s,t:numbers (Number field:Q,R,ℂ) • s(x+y)=sx+sy • (s+t)x=sx+tx • s(tx)=(st)x • 0⋅x=0 • 1⋅x=x Example of a Common Vector Spaces • R3={(x_1,x_2,x_3 )│x_1∈Rx_2∈Rx_3∈R is a vector space • Addition and multiplication defined as ○ (x_1,x_2,x_3 )+(y_1,y_2,y_3 )≝(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ t(x_1,x_2,x_3 )≝(tx_1,tx_2,tx_3 ) Example of a Strange Vector Spaces • Number:R • Vector:R+=(0,∞) • Addition ○ x⨁y=x×y ○ e.g. √2⨁√2=√2×√2=2 ○ Zero vector: 1 • Inverse of Addition ○ Given x, find y ○ x⨁y=1 ○ ⇒y=1/x • Multiplication with numbers ○ t∈R, x∈R_+ ○ t⨀x≝x^t • Proof: Distributive law ○ t⨀(s⨀x)=(x^s )^t=x^st=(ts)⨀x
Read More >>
  • 1
  • …
  • 4
  • 5
  • 6

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP