Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / October / Page 4

Math 375 – Homework 5

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 10/5

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Best Approximation of Elements • Theorem ○ V: vector space with inner product ○ L⊆V: finite dimensional linear subspace ○ If x∈V then there exists excatly one z∈L ○ that minimizes the distance to x ○ i.e. ∀y∈L, ‖y−x‖≥‖z−x‖ and ○ If y≠z then ‖y−x‖>‖z−x‖ • Solution ○ L is finite dimensional therefore it has a basis ○ Gram-Schmidt says that we can assume the basis is orthonormal ○ i.e. L has a basis {e_1,e_2,…,e_n } where {■8((e_k,e_l )=0&k≠l@(e_k,e_k )=1&∀k)┤ ○ Then z is given by z=(x,e_1 ) e_1+(x,e_2 ) e_2+…+(x,e_n ) e_n ○ Since z is a linear combination of {e_1,…,e_n }, z∈L • Claim ○ x−z is perpendicular to all u∈L ○ i.e. if u∈L then u⊥x−z ○ i.e. (u,x−z)=0 ○ i.e. (u,x)=(u,z) • Proof: (u,x)=(u,z) ○ Let u∈L be given ○ Then {e_1,…e_n } is a basis for L ○ So for certain u_1,…,u_n∈R ○ Calculate (u,x) § (u,x)=(u_1 e_1+…+u_n e_n,x) § =u_1 (e_1,x)+…+u_n (e_n,x) ○ Calculate (u,z) § (u,z)=(u_1 e_1+…+u_n e_n,(x,e_1 ) e_1+…+(x,e_n ) e_n ) § =[u_1 (x_1,e_1 )(e_1,e_1 )+…+u_1 (x_1,e_n )(e_1,e_n )]+… +[u_n (x_1,e_1 )(e_n,e_1 )+…+u_n (x_n,e_n )(e_n,e_n )] § =u_1 (x,e_1 )+u_n (x,e_2 )+…+u_n (x,e_n ) ○ Therefore (u,x)=(u,z) ○ i.e. u⊥x−z, ∀u∈L • Proof: ∀y∈L, ‖y−x‖≥‖z−x‖ ○ Let y∈L be given ○ {█(y−x=(y−z)+(z−x)@y−z⊥z−x)┤ ○ ⇒‖y−x‖^2=‖y−z‖^2+‖z−x‖^2 ○ ⇒‖y−x‖^2≥‖z−x‖^2 ○ ⇒‖y−x‖≥‖z−x‖ ○ Also if y≠z then ‖y−x‖>‖z−x‖ Foorier Series • V={all continuous function f:[0,π]→R • (f,g)\=∫_0^π▒f(x)g(x)dx • Let f_n (x)=sin⁡(nx) • ⇒(f_n,f_m )=∫_0^π▒〖sin⁡(nx) sin⁡(mx)dx〗 x Z........_T as *U x 11×-21 My ex I TZ _ - _ - -- _ -- 80 s
Read More >>

Math 375 – 10/4

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Proof Writing • Question ○ Let V be a vector space ○ Let x,y∈V such that {x,y} is independent ○ Prove that {2x+y,3x+2y} is independent • Proof ○ Let c_1,c_2∈R be arbitrary constant ○ c_1 (2x+y)+c_2 (3x+2y)=0 ○ (2c_1+3c_2 )x+(c_1+2c_2 )y=0 ○ Let {█(d_1=2c_1+3c_2@d_2=c_1+2c_2 )┤, d_1,d_2∈R ○ d_1 x+d_2 y=0 ○ Because {x,y} is independent ○ d_1=d_2=0 ○ {█(d_1=2c_1+3c_2=0@d_2=c_1+2c_2=0)┤⇒c_1=c_2=0 ○ Therefore {2x+y,3x+2y} is independent • Prompt ○ Exchange proofs with someone else. In a different color of pen or pencil, give them written feedback on their proof. ○ The main things to be looking for are: § Is the proof logically valid? § Is the proof understandable and clearly written? § Is the proof well-organized? ○ Here are some more questions it might be useful to ask (but don
Read More >>

Math 375 – 10/2

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Is S={(█(1@2@−1@0)),(█(−1@−2@−1@0)),(█(π@√2@−1@1/2)),(█(−3@2@2@1)),(█(1@2@0@3))} independent? • Claim ○ If S is linearly dependent • Proof ○ If S is linearly independent, then § dim⁡(span(S))=|S|=5 ○ But because span(S) is a subspace of R4 § dim⁡(span(S))≤dim⁡〖R4 〗=4 ○ So S is linearly dependent Question 2 • Prove ○ 1,sin⁡x,sin⁡2x is linearly independent • Claim ○ ∀ a,b,c∈R ○ if a+b⋅sin⁡x+sin⁡2x=0, ∀x∈[0,1] ○ then a=b=c=0 • Proof ○ Set x=0 ⇒a=0 ○ Set x=π/6 ⇒ 1/2 b+√3/2 c=0 ○ Set x=π/4 ⇒b=c=0 ○ Therefore a=b=c=0
Read More >>

Math 375 – Midterm 1 Practice

  • Oct 27, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • …
  • 8

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP