Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / October / Page 5

Math 375 – Homework 4

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 9/28

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Distance • Definition ○ Distance between two vectors x,y is defined as ○ distance(x,y)=‖x−y‖=√((x−y,x−y) ) • Example 1 ○ Given § V=R2 § (x,y)=x_1 y_1+x_2 y_2 ○ Distance between two vectors is § distance(x,y) § =‖x−y‖ § =√((x−y,x−y) ) § =√((x_1−y_1 )^2−(x_2−y_2 )^2 ) • Example 2 ○ Given § V={all continuous function f:[0,1]→R § (f,g)=∫_0^1▒f(x)g(x)dx ○ Distance between two functions is § distance(f,g) § =‖f−g‖ § =√((f−g,f−g) ) § =∫_0^1▒〖(f(x)−g(x))^2 dx〗 ○ Also known as root mean square distance Triangle Inequality (Version 1) • Statement ○ ‖a+b‖≤‖a‖+‖b‖ • Proof ○ ‖a+b‖≝(a+b,a+b) ○ =(a,a)+(a,b)+(b,a)+(b,b) ○ =(a,a)+2(a,b)+(b,b) ○ ≤‖a‖^2+2‖a‖‖b‖+‖b‖^2 ○ =(‖a‖+‖b‖)^2 ○ Therefore ‖a+b‖≤‖a‖+‖b‖ Triangle Inequality (Version 2) • Statement ○ distance(x,y)≤distance(x,z)+distance(z,y) • Proof ○ Let a=x−z, b=z−y ○ then a+b=x−y ○ ‖x−y‖≤‖x−z‖+‖z−y‖ ○ distance(x,y)≤distance(x,z)+distance(z,y) Orthogonal • Definition ○ {v_1,…,v_n } are orthogonal if (v_k,v_l )=0, ∀k≠l • Theorem ○ If {v_1,…,v_n } are orthogonal ○ and v_k≠0 for all k∈{1,2, …,n} ○ then {v_1,…,v_n } is linearly independent • Proof ○ Suppose § c_1 v_1+…+c_n v_n=0 ○ Then we have to show § c_1=c_2=…=c_n=0 ○ Let k∈{1,2, …,n}, then § (c_1 v_1+…+c_n v_n,v_k )=(0,v_k ) § c_1 (v_1,v_k )+…+c_k (v_k,v_k )+…+c_n (v_n,v_k )=0 ○ Because (v_k,v_l )=0, ∀k≠l, we have § 0+…+0+c_k (v_k,v_k )+0+…+0=0 § c_k (v_k,v_k )=0 ○ Because v_k≠0 § (v_k,v_k )≠0 § c_k=0/((v_k,v_k ) )=0 ○ Therefore § c_1=c_2=…=c_n=0 • Theorem ○ If x=c_1 v_1+…+c_n v_n ○ and {v_1,…,v_n } are non zero and orthogonal ○ then c_k=((x,v_k ))/((v_k,v_k ) ) • Proof ○ (x,v_k ) ○ =(c_1 v_1+…+c_n v_n,v_k ) ○ =c_1 (v_1,v_k )+…+c_k (v_k,v_k )+…+c_n (v_n,v_k ) ○ =0+…+0+c_k (v_k,v_k )+0+…+0 ○ =c_k (v_k,v_k ) ○ ⇒c_k=((x,v_k ))/((v_k,v_k ) ) Gramm-Schmidt Process • Introduction ○ If V has a basis {v_1,…,v_n } ○ then there is an orthogonal basis {w_1,…,w_n } ○ The process to find the orthogonal basis is called ○ Gramm-Schmidt Process • Process ○ w_1=v_1 ○ w_2=v_2−((v_2,w_1 ))/((w_1,w_1 ) ) w_1 ○ w_3=v_3−((v_3,w_1 ))/((w_1,w_1 ) ) w_1−((v_3,w_2 ))/((w_2,w_2 ) ) w_2 ○ ⋮ ○ w_k=v_k−∑_(i=0)^(k−1)▒〖((w_k,w_i ))/((w_i,w_i ) ) w_i 〗 • Proof: (w_3,w_2 )=0 ○ Assume we ve already shown (w_1,w_2 )=(w_1,w_3 )=0 ○ (w_3,w_2 ) ○ =(v_3,w_2 )−((v_3,w_1 ))/((w_1,w_1 ) )⋅(w_1,w_2 )−((v_3,w_1 ))/((w_1,w_1 ) )⋅(w_1,w_2 ) ○ =(v_3,w_2 )−(v_3,w_2 ) ○ =0 • Example 1 ○ Given § V=R2 § (x,y)=x_1 y_1+x_2 y_2 ○ Find the orthogonal basis for v_1=(█(1@1)),v_2=(█(1@2)) § w_1=v_1=(█(1@1)) § w_2=v_2−((v_2,w_1 ))/((w_1,w_1 ) ) w_1=(█(−1/2@1/2)) § {(█(1@1)),(█(−1∕2@1∕2))} • Example 2 ○ Given § V={all continous functions f:[0,1]→R § (f,g)=∫_0^1▒f(x)g(x)dx ○ Find the orthogonal basis for f_1 (x)=1, f_2 (x)=x § g_1 (x)=f_1 (x)=1 § g_2 (x)=f_2 (x)−((f_2,g_1 ))/((g_1,g_1 ) ) g_1 (x)=x−1/2 § {1,x−1/2}
Read More >>

Math 375 – 9/27

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Theorem • Statement ○ Let W_1,W_2⊆V be subspace ○ W_1∪W_2 is a subspace ⇔W_1⊆W_2 or W_2⊆W_1 • Proof: W_1⊆W_2 or W_2⊆W_1⇒W_1∪W_2 is a subspace ○ Obvious • Proof: W_1∪W_2 is a subspace ⇒W_1⊆W_2 or W_2⊆W_1 ○ Suppose § ∃v_1∈W_1, s.t. v_1∉W_2 § ∃v_2∈W_2, s.t. v_2∉W_1 ○ Then § v_1+v_2∉W_1 ○ Indeed, if § v_1+v_2=w∈W_1 ○ Then § v_2=w−v_1∈W_1 § Contradiction ○ Likewise § v_1+v_2∉W_2 ○ Therefore § v_1+v_2∉W_1∪W_2 Question 1 • Let V be a vector space, ⟨⋅,⋅⟩ is an inner product on V • Prove ○ ∀ v,w∈V ○ ⟨u,v⟩=0⇔‖v+c⋅w‖≥‖v‖, ∀c∈R • Proof: ⟨u,v⟩=0⇒‖v+c⋅w‖≥‖v‖ ○ c^2 ‖w‖^2≥0 ○ ‖v‖^2+c^2 ‖w‖^2≥‖v‖^2 ○ ‖v‖^2+2c⟨u,v⟩+c^2 ‖w‖^2≥‖v‖^2 ○ ‖v+c⋅w‖^2≥‖v‖^2 ○ ‖v+c⋅w‖≥‖v‖ • Proof: ‖v+c⋅w‖≥‖v‖⇒⟨u,v⟩=0 ○ ‖v+c⋅w‖≥‖v‖ ○ ‖v‖^2+2c⟨u,v⟩+c^2 ‖w‖^2≥‖v‖^2 ○ In order for the inequality to be true for all c ○ ⟨u,v⟩=0 Question 2 • Let V be a finite-dimensional vector space • ⟨⋅,⋅⟩ is an inner product on V • Let W⊆V be a subspace • Define W^⊥={v∈V│⟨v,w⟩=0, ∀w∈W} • Prove that ○ W^⊥ is a subspace ○ dim⁡W+dim⁡〖W^⊥=dim⁡V 〗
Read More >>

Math 375 – 9/26

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Inner Product • Definition (on real vector space) ○ An inner product on a real vector space V ○ is a real-valued function (x,y) with x,y∈V ○ for which: § (x+y,z)=(x,z)+(y,z), \ ∀x,y,z∈V § (tx,y)=t(x,y), ∀x,y∈V,and t∈R § (x,y)=(y,x), ∀x,y∈V § (x,x)≥0, ∀x∈V § (x,x)=0⇒x=0 • Definition (on complex vector space) ○ An inner product on a real vector space V ○ is a real-valued function (x,y) with x,y∈V ○ for which: § (x+y,z)=(x,z)+(y,z), \ ∀x,y,z∈V § (tx,y)=t(x,y), ∀x,y∈V,and t∈R § (x,y)=((y,x) ) ̅, ∀x,y∈V § (x,x)≥0, ∀x∈V § (x,x)=0⇒x=0 ○ Note: (x,ty)=((ty,x) ) ̅=t ̅(x,y) • Example in R2 ○ Let V=R2 ○ The following is an inner product for V § (x,y)=x_1 y_1+x_2 y_2+…+x_n y_n ○ Proof: (tx,y)=t(x,y) § (tx,y) § =(tx_1 ) y_1+(tx_2 ) y_2+…+(tx_n ) y_n § =t(x_1 y_1 )+t(x_2 y_2 )+…+t(x_n y_n ) § =t(x_1 y_1+x_2 y_2+…+x_n y_n ) § =t(x,y) • Example in ℂ^n ○ Let V=ℂ^n ○ The following is an inner product for V § (x,y)=x_1 (y_1 ) ̅+x_2 (y_2 ) ̅+…+x_n (y_n ) ̅ ○ Proof § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Counterexample in Rn ○ Let V=Rn ○ Whether the following is an inner product for V § (x,y)=x_1 y_1−x_2 y_2 ○ We need to check § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Counterexample in Rn ○ Let V=Rn ○ Whether the following is an inner product for V § (x,y)=x_1 y_1 ○ We need to check § (x+y,z)=(x,z)+(y,z) § (tx,y)=t(x,y) § (x,y)=((y,x) ) ̅ § (x,x)≥0 § (x,x)=0⇒x=0 • Example in Rn ○ Let V=Rn ○ The following is an inner product for V § (x,y)=(x_1+x_2 )(y_1+y_2 )+x_2 y_2 • Example in function space ○ V=C([a,b])={all continuous function on [a,b]} ○ The following is an inner product for V § (f,g)=∫_a^b▒f(x)g(x)dx, where a<b ○ We need to check § (f+g,h=(f,h+(g,h § (t⋅f,g)=t(f,g) § (f,g)=(g,f) § (f,f)≥0 § (f,f)=0⇒f=0 Length of Vector • Definition ○ √((x,x) )=‖x‖ is called the length of x ○ Note: (x,x)=‖x‖^2 • Cauchy Schwarz Inequality ○ (x,y)≤|x||y|, for all x,y∈V ○ Proof on page 16 Angle • Definition ○ If x,y∈V (x≠0,y≠0) ○ Then the angle between x,y is θ where ○ cos⁡θ=((x,y))/(‖x‖⋅‖y‖ ) • Note ○ Cauchy Schwarz Inequality implies ○ −1≤((x,y))/(‖x‖⋅‖y‖ )≤1 • Orthogonal ○ Vectors x,y are called orthogonal or perpendicular if ○ (x,y)=0 • Example ○ Given § V={all polynomials} § (f,g)=∫_0^1▒f(x)g(x)dx ○ Find the angle θ between f(x)=1 and g(x)=1 § ‖f‖=√(∫_0^1▒f(x)f(x)dx)=√(∫_0^1▒〖1^2 dx〗)=1 § ‖g‖=√(∫_0^1▒g(x)g(x)dx)=√(∫_0^1▒〖x^2 dx〗)=√3/3 § (f,g)=∫_0^1▒f(x)g(x)dx=∫_0^1▒xdx=1/2 § cos⁡θ=((x,y))/(‖x‖⋅‖y‖ )=√3/2 § ⇒θ=π/6
Read More >>

Math 375 – 9/25

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Span • L(S)={x∈V│■8(∃n∈N∃c_1,…,c_n∈R∃x_1,…,x_n∈S@x=c_1 x_1+…+c_n x_n )} Theorem • Statement ○ S⊆V is a subspace ⇔S=L(S) • Proof: S=L(S)⇒S⊆V is a subspace ○ Let s,t∈S, k∈R ○ Then s+k⋅t∈L(S) ○ L(S)=S⇒s+k⋅t∈S ○ ⇒S is closed under addition and scalar multiplication ○ Therefore S is a subspace of V • Proof: S⊆V is a subspace⇒S=L(S) ○ If T⊆V and T is a subspace, then L(S)⊆T ○ Setting T=S, we have L(S)⊆S ○ We also know that S⊆L(S) ○ So S=L(S) by definition of set equality Question 1 • Example of L(S∩T)≠L(S)∩L(T), where S,T⊆V ○ V=R2 ○ S={v_1,v_2 }, T={w_1,w_2 } ○ L(S∩T)=L(∅)={0} ○ L(S)=L(R)=R2 Question 2 • Let S_1,…,S_n be subsets of V • When is L(S_1 )∪…∪L(S_n ) a subspace? • L(S_1 )∪L(S_2 ) is a subspace ⇔L(S_1 )⊆L(S_2 ) or L(S_2 )⊆L(S_1 ) .02 ore I U. • Tu,
Read More >>
  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP