Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / October / Page 7

Math 375 – Homework 2

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 9/14

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Subspace • Theorem ○ V: vector space ○ S: a subset of V (S⊆V) ○ If for every x,y∈S, we have x+y∈S ○ And if for every x∈S, t∈R, we have tx∈S ○ Then S is also a vector space • Given ○ It has been shown that ○ Rn={(x_1,x_2,…,x_n )│x_1,x_2,…,x_n∈R ○ is a vector space • Example ○ Is S={(x_1,x_2,x_3)│2x_2+x_2=0} a vector space? ○ S∈R3, so we only need to verify the closure axioms § x,y∈S⇒x+y∈S § x∈S, t∈R⇒ tx∈S • Linear subspace ○ If V is a vector space and S⊆V is also a vector space, ○ then S is called a linear subspace of V • Function space example 1 ○ V={all real−valued functions with domain [0,1]} ○ ={f│f:[0,1]→R} is a vector space • Function space example 2 ○ (x_1,x_2,…,x_n ) could be viewed as a function ○ from the set {1,2,3,…,n} to R Span of Vector Spaces • Linear Combination ○ Given § V is a vector space § v_1,v_2,…,v_n∈V § c_1,c_2,…,c_n∈R ○ then c_1 v_1+c_2 v_2+…+c_n v_n is called ○ a linear combination of v_1,v_2,…,v_n • Span ○ If V is a vector space and A⊆V is a subspace of V ○ then the span of A is the set of all linear combinition of vectors in A ○ span(A)={c_1 v_1+c_2 v_2+…+c_n v_n│■8(v_1,v_2,…,v_n∈S@c_1,c_2,…,c_n∈R, n≥1} • Example ○ V=R2 ○ A={(x_1,x_2)│x_1^2+x_2^2≤1} ○ span(A)=R2 Span of Function spaces • Example ○ V={all real-valued functions with domain [−π,+π]} ○ A={1,x,x^2,x^3,x^4 } ○ Span of A contains function of the form § f(x)=a_0+a_1 x+a_2 x^2+a_3 x^3+a_4 x^4 § where a_0,a_1,a_2,a_3,a_4∈R ○ ⇒span(A)={all polynomials of degree≤4 with domain [−π,+π]} • Change of Domain ○ V={all real-valued functions with domain {0,1}} ○ A={1,x,x^2,x^3,x^4 } ○ span(A)={x} • Question ○ Does x^5∈span{1,x,x^2,x^3,x^4 } with domain [−π,+π] ○ No, suppose x^5∈span{1,x,x^2,x^3,x^4 }, then § x^5=a_0+a_1 x+a_2 x^2+a_3 x^3+a_4 x^4, (∀x∈[−π,+π]) § Let x=0⇒a_0=0 ○ Differentiate both side, we get § 5x^4=a_1+2a_2 x+3a_3 x^2+4a_4 x^3 § Let x=0⇒a_1=0 ○ Differentiate both side, we get § 4⋅5x^3=2a_2+6a_3 x+12a_4 x^2 § Let x=0⇒a_2=0 ○ Similarly § a_0=a_1=a_2=a_3=a_4 § ⇒x^5=0 , (∀x∈[−π,+π]) ○ Let x=1, we get 1^5=1=0 ○ Therefore x^5 is not in span{1,x,x^2,x^3,x^4 } Linear Dependence • Definition ○ If V is a vector space, v_1,…,v_n∈V ○ {v_1,…,v_n } are linearly independent if for every c_1,…,c_n∈R § c_1 v_1+c_2 v_2+…+c_n v_n ○ We have § c_1=c_2=…=c_n=0 ○ i.e. The only linear combination of {v_1,…,v_n } that adds up to 0 is § 0v_1+0v_2+…+0v_n=0 • Example 1 ○ v_1=(1,0), v_2=(0,1), v_3=(2,2) ○ {v_1,v_2,v_3 } is linear dependent ,because 2v_1+2v_2−v_3=0 • Example 2 ○ v={0} is linear dependent, because 2×0=0
Read More >>

Math 375 – 9/13

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
How to Check Vector Space • Check 10 axioms • Check that it
Read More >>

Math 375 – 9/12

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
What does a proof look like? • Assumptions • Conclusion • Proof Example 1 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=0} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is a vector space • Proof: Axiom 1 (∀x,y∈V:x+y∈V) ○ let z=(z_1,z_2,z_3 )=x+y=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ z_1+z_3=x_1+y_1+x_3+y_3=(x_1+x_3 )+(z_1+z_3 )=0 ○ ⇒z∈V Example 2 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=1} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is not a vector Space • Proof: ∃x,y∈V:x+y∉V Axiom 5 • To show Axiom 5 does not hold, • we have to prove for every O∈V, • there is an x∈V with O+x≠x Example 3 • Assumption ○ V={all functions f:[0,1]→R} • Conclusion ○ V is a vector space • Proof: Axiom 3(∀f,g∈V:f+g=g+f) ○ Let h=f+g and k=g+f ○ Both h and g has a domain of [0,1] ○ h(x)=f(x)+g(x)=g(x)+f(x)=k(x)
Read More >>

Math 375 – 9/11

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Field • A field F is a set together with 2 binary operations • +, × (− optional) that satisfies the following: ○ a+b=b+a ○ (a+b)+c=a+(b+c) ○ a×b=b×a ○ (a×b)×c=a×(b×c) ○ a×(b+c)=a×b+a×c ○ There is a special element O, such that a+O=a ○ There is a special element 1, such that 1×a=a ○ For all a, there is a b, such that a+b=0 ○ For any a≠O, there is a b, such that a×b=1 ○ Optional:1≠O, O≠1 • Example ○ F={0,1} ○ +≔{█(0+0=0@0+1=1@1+1=0)┤ ○ ×≔{█(0×0=0@0×1=0@1×1=1)┤ • Example ○ F={0,1,2} ○ +≔{█(0+0=0@0+1=1@0+2=2@1+1=2@1+2=0@2+2=1)┤ ○ ×≔{█(0×0=0@0×1=0@0×2=0@1×1=1@1×2=2@2×2=1)┤ Vector Space • A vector space V(over F) is a set together with binary operations • {█(+:V+V→V@×:F×V→V)┤, such that ○ F is a field ○ u+v=v+u, ∀u,v∈V ○ (u+v)+w=v+(u+w), ∀u,v,w∈V ○ There is a 0 and vector 0 ⃗, such that § ∀u,v∈V, ∀a,b∈F § u+0 ⃗=u § 0×u=0 ⃗ § a×0 ⃗=0 ⃗ § (a×b)×u=a×(b×u) § (a+b)×u=a×u+b×u § a(u+v)=a×u+a×v § u+(−1)u=(1+(−1))×u=0×u=0 ⃗
Read More >>
  • 1
  • …
  • 5
  • 6
  • 7
  • 8

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP