Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 10

Math 375 – 11/9

  • Nov 10, 2017
  • Shawn
  • Math 375
  • No comments yet
Expansion by Rows Theorem • Cofactor Matrix ○ C_kl=(−1)^(k+l) {█((n−1)×(n−1) determinant obtained@by deleting row k and column l @from the original determinant)} • Determinant and Cofactor Matrix ○ det⁡(A)=|■8(a_11&a_12&⋯&a_1n@⋮&⋮&⋮&⋮@a_k1&a_k2&…&a_kn@⋮&⋮&⋮&⋮@a_n1&a_n2&⋯&a_nn )|=a_k1 C_k1+a_k2 C_k2+…+a_kn C_kn ○ [■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )] ⏟([■8(C_11&C_21&⋯&C_n1@C_12&C_22&…&C_n2@⋮&⋮&⋱&⋮@C_1n&C_2n&⋯&C_nn )] )┬(adjugate matrix of A: adj(A))=det⁡A⋅[■(1&&&@&1&&@&&⋱&@&&&1)] • Expansion by Rows ○ |■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=a_11 C_11+a_12 C_12+…+a_1n C_1n ○ |■8(x_1&x_2&⋯&x_n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=x_1 C_11+x_2 C_12+…+x_n C_1n • Calculating A⋅adj(A) ○ Expanding A⋅adj(A) § [■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )][■8(C_11&C_21&⋯&C_n1@C_12&C_22&…&C_n2@⋮&⋮&⋱&⋮@C_1n&C_2n&⋯&C_nn )] § =[■8(∑_(k=1)^n▒〖a_1k C_1k 〗&∑_(k=1)^n▒〖a_1k C_2k 〗&⋯&∑_(k=1)^n▒〖a_1k C_nk 〗@∑_(k=1)^n▒〖a_2k C_1k 〗&∑_(k=1)^n▒〖a_2k C_2k 〗&…&∑_(k=1)^n▒〖a_2k C_nk 〗@⋮&⋮&⋱&⋮@∑_(k=1)^n▒〖a_nk C_1k 〗&∑_(k=1)^n▒〖a_nk C_2k 〗&⋯&∑_(k=1)^n▒〖a_nk C_nk 〗)] ○ Where § ∑_(k=1)^n▒〖a_1k C_1k 〗=|■8(a_11&a_12&⋯&a_1n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=det⁡A § ∑_(k=1)^n▒〖a_1k C_2k 〗=|■8(a_21&a_22&⋯&a_2n@a_21&a_22&…&a_2n@⋮&⋮&⋱&⋮@a_n1&a_n2&⋯&a_nn )|=0 § ⋮ ○ Conclusion § A⋅adj(A)=[■(det⁡A&&&@&det⁡A&&@&&⋱&@&&&det⁡A )]=det⁡A [■(1&&&@&1&&@&&⋱&@&&&1)] • Theorem ○ det⁡〖(A)≠0〗⟺A is invertible and A^(−1)=1/det⁡A ⋅adj(A) ○ det⁡(A)=0⟺A is not invertible • Example ○ Let A=[■8(a&b@c&d)] ○ Cofactor Matrix § C=[■8(C_11&C_12@C_21&C_22 )]=[■8(d&−c@−b&a)] ○ Adjugate Matrix § adj(A)=C^T=[■8(d&−b@−c&a)] ○ Determinant § det⁡A=|■8(a&b@c&d)|=ad−bc ○ Inverse Matrix § A^(−1)=[■8(a&b@c&d)]^(−1)=1/det⁡A ⋅adj(A)=1/(ad−bc) [■8(d&−b@−c&a)] Cramer
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP