Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 28

Math 375 – 11/28

  • Nov 28, 2017
  • Shawn
  • Math 375
  • No comments yet
Open Balls and Open Sets • Open Interval • Closed Interval • Interior Point ○ E⊆Rn is a subset ○ p∈E is an interior point if there is an r 0 ○ such that B_r (p)⊆E ○ where B_r (p) is the open disc of radius centered at p ○ B_r (p)={x∈Rn│‖x−p‖ r} • Koch s Snowflake • Open Sets ○ E⊆Rn is open if all x∈E are interior points in E • Example • Boundary Point ○ A point p∈Rn is a boundary point for E if for every r 0 ○ B_r (p) contains x,y with x∈E and y∉E Limits and Continuity • Limits ○ lim_(x→a)⁡f(x)=L⟺lim_(‖x−a‖→0)⁡‖f(x)−L‖=0 ○ If x→a, then f(x)→L • Properties ○ If f(x)→L∈Rm,g(x)→M∈Rm, when x→a, then ○ f(x)±g(x)→L±M ○ f(x)⋅g(x)→L⋅M ○ ‖f(x)‖→‖L‖ ○ f(x)/g(x) →L/M ○ (only when n=1, f(x),g(x)∈Rn) • Graph ○ Graph of f={(x,y,z)|z=f(x,y)} • Continuity ○ f:Rn→Rm is continuous at a∈Rn ○ if lim_(x→a)⁡f(x)=f(a) • Continuous Function Example ○ f(x_1,…,x_n )=x_k ○ f:Rn→R • Properties ○ If f,g is continuous ○ Then f±g, fg, f/g (g(a)≠0) are continuous • Example ○ f:R2→R ○ f(x,y)={■8(xy/(x^2+y^2 )&(x,y)≠(0,0)@0&x=y=0)┤ ○ f is continuous at all point except (0,0) ○ Let (x,y)→(0,0) along a straight line with angle θ ○ x=rcos⁡θ, y=rsin⁡θ ○ f(x,y)=xy/(x^2+y^2 )=(r^2 sin⁡θ cos⁡θ)/(r^2 cos^2⁡θ+r^2 sin⁡θ )=cos⁡θ sin⁡θ ○ Note that f(x,y) does not depend on r ○ lim_█((x,y)→(0,0)@along line@with angle θ)⁡f(x,y)=sin⁡θ cos⁡θ ○ When θ=π/2⇒f=0, when θ=π/4⇒f=1/2⋯ ○ Therefore we get the counter plot near origin ○ And the graph near 0 Derivative • Directional Derivative ○ D_hf(x)=∇_hf(x)= f^′ (x;h⃗ )=df_x⋅h ○ =lim_(t→0)⁡〖(f(x+th⃗ )−f(x))/t〗 ○ =[d/dt f(x+th⃗ )]_(t=0) • Example ○ f:Rn→R ○ f(x)=‖x‖^2 ○ f^′ (x;h⃗ ) ○ =[d/dt f(x+th]_(t=0) ○ =[d/dt ‖x+th^2 ]_(t=0) ○ =[d/dt (h2 t^2+(2hx)t+x^2 )]_(t=0) ○ =[2h2 t+2hx]_(t=0) ○ =2x⋅h • Partial Derivative • Total Derivative - • •
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP