Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 29

Math 375 – 11/29

  • Nov 29, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 (from Monday) • Given ○ Let V be a vector space and let T:V→V be a linear map ○ Suppose x,y∈V are eigenvectors of T with eigenvalues λ and μ. • Prove ○ If ax+by (a≠0, b≠0) is an eigenvector of T, then λ=μ • Proof ○ Tx=λx, Ty=μy ○ ⇒T(ax+by)=aλx+bμy ○ Denote the eigenvalue for ax+by to be k ○ ⇒T(ax+by)=k(ax+by) ○ ⇒aλx+bμy=akx+bky ○ ⇒a(λ−k)x−b(μ−k)y=0 ○ If x,y are linearly independet § a(λ−k)=b(μ−k)=0 § Because a≠0, b≠0 § ⇒λ=μ=k ○ If x,y are linearly dependet § x=cy for some c § Tx=cTy=cμy=μ(cy)=μx § ⇒λ=μ Question 2 • Given ○ Let A be a real n×n matrix such that A^2=−I • Note ○ [■8(0&a@−1/a&0)]^2=−I, (a≠0) • Proof: A is invertibe ○ A(−A)=−A^2=−(−I)=I ○ ⇒A^(−1)=−A ○ ⇒A is invertibe • Proof: n is even ○ Suppose n is odd ○ det⁡〖A^2 〗=(det⁡A )^2≥0 ○ det⁡(−I)=−1<0 ○ Which makes a contradiction ○ Therefore n is even • Proof: A has no real eigenvalues ○ Suppose ∃λ∈R, x∈Rn, s.t. Ax=λx ○ A^2 x=−Ix=−x=λ^2 x ○ So λ^2=−1⇒λ=±i ○ Which makes a contradiction ○ Therefore A has no real eigenvalues • Proof: det⁡A=1 (when n=2) ○ A=[■8(a&b@c&d)] ○ A^2=[■8(a^2+bc&ab+bd@ac+cd&d^2+bc)] ○ {█(a^2+bc=d^2+bc=−1@ab+bd=ac+cd=0)┤ ○ ⇒ad−bc=1 • Proof: det⁡A=1 (general case) ○ (det⁡A )^2=det⁡〖A^2 〗=det⁡(−I)=(−1)^n=1 ○ ⇒det⁡A=±1 ○ Ax=λx⇒(Ax) ̅=(λx) ̅⇒Ax ̅=λ ̅x ̅ ○ Therefore the eigenvalues come in complex conjugate pairs ○ det⁡A=(λ_1 (λ_1 ) ̅ )(λ_2 (λ_2 ) ̅ )⋯(λ_k (λ_k ) ̅ )≥0 ○ Therefore det⁡A=1 Question 3 • Given ○ Let T:V→V be a finite-dimensional real linear transformation ○ T has no real eigenvalues • Proof: n is even ○ Suppose n is odd ○ f(λ)=−λ^n+a_(n−1) λ^(n−1)+…+a_1 λ+a_0 ○ As λ→∞, f(λ)⇒−∞ ○ As λ→−∞, f(λ)⇒∞ ○ By the Intermediate Value Theorem ○ f(λ) must have a real root ○ Which makes a contradiction ○ Therefore n is even • Proof: n=dim⁡V
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP