Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / Page 2

Math 375 – 11/21

  • Nov 21, 2017
  • Shawn
  • Math 375
  • No comments yet
Eigenvalues and Eigenvectors • Definition ○ If T:V→V is linear and V is a vector space ○ Then v∈V is an eignevector of T with eigenvalue λ if § v≠0 § Tv=λv • Theorem ○ Linear transformation T:Rn→Rn (or ℂ^n→ℂ^n) ○ matrix(T)=T=[■8(t_11&⋯&t_1n@⋮&⋱&⋮@t_n1&⋯&t_nn )] ○ Then λ is an eigenvalue of T if ○ det⁡(T−λI)=0 • Characteristic Polynomial ○ det⁡(T−λI) is the called characteristic polynomial of T ○ f(λ)=det⁡(T−λI)=|■8(t_11−λ&t_12&⋯&t_1n@t_21&t_22−λ&…&t_2n@⋮&⋮&⋱&⋮@t_n1&t_n2&⋯&t_nn−λ)| ○ =(−λ)^n+c_1 (−λ)^(n−1)+…+c_(n−1) (−λ)+c_n • How to Find Eigenvalues ○ Solve det⁡(T−λI)=0 ○ Get roots λ_1,…,λ_n (possibly repeated) • How to Find Eigenvectors ○ Solve (T−λI)v=0 ○ For λ=λ_1,λ=λ_2,…,λ=λ_n ○ (T−λI)v=0 is n equations with n unknowns ○ Typically v=0 is the only solution for some λ=λ_i ○ Then det⁡(T−λI)=0, and there is a solution v≠0 • Coefficients of Characteristic Polynomial ○ By definition § f(λ)=(−λ)^n+c_1 (−λ)^(n−1)+…+c_(n−1) (−λ)+c_n ○ By Fundamental Theorem of Algebra § f(λ)=a(λ_1−λ)(λ_2−λ)⋯(λ_n−λ) ○ Comparing the coefficient of (−λ)^n, we get § a=1 ○ Setting λ=0 to both polynomials we get § c_n=det⁡T=λ_1 λ_2…λ_n ○ By Vieta
Read More >>

Math 375 – 11/20

  • Nov 21, 2017
  • Shawn
  • Math 375
  • No comments yet
Eigenvalues and Eigenvectors • Definition ○ T:V→V linear, for {█(x∈V@λ∈ℂ)┤, (x≠0) ○ We say x is an eigentvector for T with eigenvalue λ if Tx=λx • Note ○ Tx=λx ○ ⇒Tx−λx=0 ○ ⇒(T−λI)x=0 ○ ⇒x∈N(T−λI) Find all eigenvalues and eigenvectors • T=I ○ Tx=1x, ∀x∈V ○ Eigenvalue = 1 with eigenvectors of all elements in V • T=0 ○ Tx=0x, ∀x∈V ○ Eigenvalue = 0 with eigenvectors of all elements in V • T=[■(c_1&&@&⋱&@&&c_n )], (c_i≠c_j for i=j) ○ [■(c_1&&@&⋱&@&&c_n )] e_i=c_i e_i ○ Eigenvalue = c_i with eigenvector of te_i, (t∈R, t≠0) • T=[■8(1&2@2&1) ○ det⁡(T−λI)=0 § |■8(1−λ&2@2&1−λ)|=0 § (λ−3)(λ+1)=0 ○ λ=3 § [■8(1−3&2@2&1−3)][█(x@y)]=[█(0@0)]⇒x=y § Eigenvector: [█(t@t)](t∈R, t≠0) ○ λ=−1 § [■8(2&2@2&2)][█(x@y)]=[█(0@0)]⇒x+y=0 § Eigenvector: t[█(1@−1)](t∈R, t≠0) • T=[■8(0&−1@1&0) ○ det⁡(T−λI)=0 § |■8(−λ&−1@1&−λ)|=0 § λ^2+1=0 ○ λ=i § [■8(−i&−1@1&−i)][█(x@y)]=[█(0@0)]⇒y=−ix § Eigenvector: t[█(1@−i)](t∈ℂ, t≠0) ○ λ=−i § [■8(i&−1@1&i)][█(x@y)]=[█(0@0)]⇒y=ix § Eigenvector: t[█(1@i)](t∈ℂ, t≠0) Multiplicity of Eigenvalues • T=[■(3&&@&3&@&&4)] ○ Eigenvalues: λ=3 or λ=4 ○ dim⁡〖N(T−λI)={■8(2&λ=3@1&λ=4@0&otherwise)┤〗
Read More >>

Math 375 – Homework 10

  • Nov 17, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 11/15

  • Nov 16, 2017
  • Shawn
  • Math 375
  • No comments yet
Theorem • Statement ○ If dim⁡V=dim⁡W<∞, then for linear map T:V→W ○ injective ⟺ surjective ⟺ bijective • Proof ○ By Rank-Nullity Theorem § dim⁡W=dim⁡V=dim⁡N(T)+dim⁡Range(T) ○ If T is injective § ⇒dim⁡N(T)=0 § ⇒dim⁡W=dim⁡Range(T) § ⇒ T is surjective § ⇒T is bijective ○ If T is not injective § ⇒dim⁡N(T)>0 § ⇒dim⁡W≠dim⁡Range(T) § ⇒T is not surjective § ⇒T is not bijective Left Inverse and Right Inverse • If both left inverse and right inverse exists • Then they are the same • Suppose ○ f:V→W ○ g,h:W→V ○ gf=id_V (i.e. g is the left inverse of T) ○ fh=id_w (i.e. h is the right inverse of T) • Then ○ g=g(fh=(gf)h=h Injective and Null Space • Proof: T injective⇒N(T)={0} ○ If T is injective ○ then the only one element mapped to 0 is 0 itself. ○ Therefore N(T)={0} • Proof: N(T)={0}⇒T injective ○ If T(x)=T(y), then ○ T(x)−T(y)=T(x−y)=0 ○ So x−y∈N(T) ○ ⇒x=y ○ Therefore T is injective
Read More >>

Math 375 – Midterm 2 Practice 2

  • Nov 15, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>
  • 1
  • 2
  • 3
  • 4
  • 5

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP