Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / December / 4

Math 375 – 12/4

  • Dec 04, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Question ○ Find all first and second order partial derivatives of ○ f(x,y)=arctan⁡〖y/x〗 • Answer ○ f_x § ∂f/∂x=(∂/∂x (y/x))/(1+(y/x)^2 )=(−y/x^2 )/(1+y^2/x^2 )=−y/(x^2+y^2 ) ○ f_y § ∂f/∂y=(∂/∂y (y/x))/(1+(y/x)^2 )=(1/x)/(1+y^2/x^2 )=x/(x^2+y^2 ) ○ f_xy § (∂^2 f)/∂y∂x=∂/∂y (∂f/∂x)=∂/∂y (−y/(x^2+y^2 )) § =([∂/∂y (−y)](x^2+y^2 )−(−y)[∂/∂y (x^2+y^2 )])/(x^2+y^2 )^2 § =(−(x^2+y^2 )+2y^2)/(x^2+y^2 )^2 § =(y^2−x^2)/(x^2+y^2 )^2 ○ f_yx § (∂^2 f)/∂x∂y=∂/∂x (∂f/∂y)=∂/∂x (x/(x^2+y^2 )) § =([∂/∂x (x)](x^2+y^2 )−(x)[∂/∂x (x^2+y^2 )])/(x^2+y^2 )^2 § =(x^2+y^2−2x^2)/(x^2+y^2 )^2 § =(y^2−x^2)/(x^2+y^2 )^2 ○ Note: f_xy=f_yx Question 2 • Question ○ Consider 〖det:〗⁡〖R(n×n)→R ○ Find all partial derivatives of det ○ Describe [∂det/(∂x_ij )] • Answer ○ ∂det/(∂x_11 ) § =lim_(h0)⁡〖1/h(|■8(x_11+hx_12&⋯&x_1n@x_21&x_22&⋯&x_2n@⋮&⋯&⋱&⋮@x_n1&x_n2&…&x_nn )|−|■8(x_11&x_12&⋯&x_1n@x_21&x_22&⋯&x_2n@⋮&⋯&⋱&⋮@x_n1&x_n2&…&x_nn )|)〗 § =lim_(h0)⁡〖1/hh■8(x_22&⋯&x_2n@⋮&⋱&⋮@x_n2&…&x_nn )|〗 § =|■8(x_22&⋯&x_2n@⋮&⋱&⋮@x_n2&…&x_nn )| § =C_11 • Theorem ○ Let X=(x_ij ) ○ [∂det/(∂x_ij )]=[■8(∂det/(∂x_11 ) (A)&⋯&∂det/(∂x_1n ) (A)@⋮&⋱&⋮@∂det/(∂x_n1 ) (A)&⋯&∂det/(∂x_nn ) (A) )]=[■8(C_11&⋯&C_1n@⋮&⋱&⋮@C_n1&⋯&C_nn )]=cof(A) • Application: use gradients to approximate ○ |■8(sin⁡(π/2+0.1)&ln⁡(1.1)@3&√4)|≈|■8(sin⁡(π/2)&ln⁡(1)@3&√4)|+0.1D_((■8(1&1@1&1)) ) |■8(1&0@3&2)|
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP