Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / December / 13

Math 375 – 12/13

  • Dec 13, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡(A−λI)=|■8(3−λ&0@3&−2−λ)|=λ^2−λ−6=0 • ⇒λ_1=3, λ_2=−2 • ⇒Λ=(■8(3&0@0&−2)) • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=k(5,3), k∈R • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=k(0,1), k∈R • The basis is (5,3), (0,1) Exercise 8.17 Question 8 • Find a Cartesian equation for the tangent plane • to the surface xyz=a^3 at a general point (x_0,y_0,z_0 ). ○ ∇f=(█(yz@xz@xy)) ○ H={(x,y,z)∈R3│∇f(x_0,y_0,z_0 )⋅(█(x−x_0@y−y_0@z−z_0 ))=0} ○ ={(x,y,z)∈R3│y_0 z_0 (x−x_0 )+x_0 z_0 (y−y_0 )+x_0 y_0 (z−z_0 )=0} ○ ={(x,y,z)∈R3│xy_0 z_0+x_0 yz_0+x_0 y_0 z=3x_0 y_0 z_0=3a^3 } Question 2 • Let f:R2→R smooth • Let g(x,y)=f(u,v)=f(sin⁡〖(x)y,x^y 〗 ) • Find g_x,g_y in terms of f_u,f_v ○ Let h(x,y)=[█(u(x,y)@v(x,y) )]=[█(sin⁡(x)y@x^y )], Then T_g=T_f∘T_ℎ ○ T_f=[■8(∂f/∂u&∂f/∂v)]=[■8(f_u&f_v )] ○ T_ℎ=[■8(∂u/∂x&∂u/∂y@∂v/∂x&∂v/∂y)]=[■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )] ○ T_g=T_f∘T_ℎ=[■8(f_u&f_v )][■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )]=[█(f_u cos⁡(x)y+f_v y⋅x^(y−1)@f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )]^T ○ ⇒{█(g_x=f_u cos⁡(x)y+f_v y⋅x^(y−1)@g_y=f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )┤
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP