Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2018 / March / 18

Math 521 – 3/16

  • Mar 18, 2018
  • Shawn
  • Math 521
  • No comments yet
Theorem 2.41 (The Heine-Borel Theorem) • For a set E∈Rk, the following properties are equivalent (a) E is closed and bounded (b) E is compact (c) Every infinite subset of E has a limit point in E • Proof (a)⇒(b) ○ If (a) holds, then E⊂I for some k-cell ○ (b) follow from § Theorem 2.40 (I is compact) § Theorem 2.35 (Closed subsets of compact sets are compact) • Proof (b)⇒(c) ○ See Theorem 2.37 • Proof (c)⇒(a) ○ Suppose E is not bounded § Then E contains points (x_n ) ⃗ s.t. |(x_n ) ⃗ | n, ∀n∈N § {(x_n ) ⃗ } is an infinite subset of E with no limit points § This is a contradiction, so E must be bounded ○ Suppose E is not closed § Then ∃(x_0 ) ⃗∈Rk that is a limit point of E but not in E § For n∈N, ∃(x_n ) ⃗∈E s.t. |(x_n ) ⃗−(x_0 ) ⃗ | 1/n § Let S={(x_n ) ⃗ }_(n∈N □ S is infinite □ S has (x_0 ) ⃗ as a limit point § Let y ⃗∈Rk and y ⃗≠(x_0 ) ⃗ □ By triangle inequality □ |(x_n ) ⃗−y ⃗ |≥|(x_0 ) ⃗−y ⃗ |−|(x_n ) ⃗−(x_0 ) ⃗ | □ |(x_n ) ⃗−y ⃗ | |(x_0 ) ⃗−y ⃗ |−1/n □ |(x_n ) ⃗−y ⃗ | 1/2 |(x_0 ) ⃗−y ⃗ | □ For all but finitely many n □ Therefore y ⃗ cannot be a limit point of S, by Theorem 2.20 § Since y ⃗ was arbitrary, nothing other than (x_0 ) ⃗ is a limit point of S § By (c), (x_0 ) ⃗∈E,which makes a contradiction, so E has to be closed ○ Therefore E is closed and bounded Theorem 2.42 (The Weierstrass Theorem) • Statement ○ Every bounded infinite subset E of Rk has a limit point in Rk • Proof ○ E is bounded, so E⊂I⊂Rk for some k-cell I ○ By Theorem 2.40, I is compact ○ By Theorem 2.37, E has a limit point in I ○ Hence, E has a limit point in Rk Subsequences • Definition ○ Given a sequence {p_n } ○ Consider a sequence {n_k }⊂N with n_1 n_2 n_3 … ○ Then the sequence {p_(n_i ) } is a subsequence of {p_n } ○ If {p_(n_i ) } converges, its limit is called a subsequential limit of {p_n } • Example ○ Let {p_n }=1/n={1, 1/2,1/3,1/4,1/5,…} ○ One subsequence is{1, 1/4,1/6,1/7,1/38,1/101,1/135,…} ○ But{1/19,1/18,1/2,1/237,1/12,1/59,1/32,…} is not a subsequence • Note ○ A subsequential limit might exist for a sequence in the absence of a limit ○ {p_n } converges to p if and only if every subsequence of {p_n } converges to p Theorem 3.6 • Statement (a) ○ If {p_n } is a sequence in a compact metric space X ○ Then some subsequence of {p_n } converges to a point of X • Proof (a) ○ Let E be the range of {p_n } ○ If E is finite § ∃p∈E and a sequence {n_i }⊂N with n_1 n_2 n_3 … s.t. § p_(n_1 )=p_(n_2 )=p_(n_3 )=…=p ○ If E is infinite § By Theorem 2.37, E has a limit point p∈X § By Theorem 2.20, inductively choose n_i s.t. d(p,p_(n_i ) ) 1/i, ∀i∈N § It follows that {p_(n_i ) } converges to p • Statement (b) ○ Every bounded sequences in Rk contains a convergent subsequence • Proof (b) ○ By Theorem 2.41, every bounded subset of Rk is in a compact subset of Rk ○ Result follows by (a)
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP