Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Math 375

Home / Mathematics / Notes / Math 375 / Page 14

Math 375 – 9/13

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
How to Check Vector Space • Check 10 axioms • Check that it
Read More >>

Math 375 – 9/12

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
What does a proof look like? • Assumptions • Conclusion • Proof Example 1 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=0} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is a vector space • Proof: Axiom 1 (∀x,y∈V:x+y∈V) ○ let z=(z_1,z_2,z_3 )=x+y=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ z_1+z_3=x_1+y_1+x_3+y_3=(x_1+x_3 )+(z_1+z_3 )=0 ○ ⇒z∈V Example 2 • Assumption ○ V={(x_1,x_2,x_3 )|x_1,x_2,x_3∈Rand x_1+x_3=1} ○ ∀ x,y∈V, x+y is defined by ○ z=x+y if z=(x_1+y_1,x_2+y_2,x_3+y_3 ) ○ tx is defined by tx=(tx_1,tx_2,tx_3 ) for every x∈V,t∈R • Conclusion ○ V is not a vector Space • Proof: ∃x,y∈V:x+y∉V Axiom 5 • To show Axiom 5 does not hold, • we have to prove for every O∈V, • there is an x∈V with O+x≠x Example 3 • Assumption ○ V={all functions f:[0,1]→R} • Conclusion ○ V is a vector space • Proof: Axiom 3(∀f,g∈V:f+g=g+f) ○ Let h=f+g and k=g+f ○ Both h and g has a domain of [0,1] ○ h(x)=f(x)+g(x)=g(x)+f(x)=k(x)
Read More >>

Math 431 – 9/11

  • Nov 21, 2017
  • Shawn
  • Math 375
  • No comments yet
Probability Space • Ω: sample space (list of all outcomes) • F: collection of events (subsets of Ω) • P: probability measure ○ P(A)∈[0,1] ○ P(∅)=0 ○ P(Ω)=1 ○ For disjoint A_1,A_2,…:P(⋃24_(i=1)^∞▒A_i )=∑_(i=1)^∞▒PA_i ) Equally Likely Outcome • P(ω)=1/(#Ω),∀ω∈Ω • P(A)=(#A)/(#Ω) • Example: 431 game with full deck ○ Ω={(c_1,c_2,c_3 )│■8(c_1 is my card@c_2 is your first card@c_3 is your second card@and they are all distinct)} ○ P(A)=(#A)/(#Ω) ○ W_7={(c_1,c_2,c_3 )∈Ω| (c_2≥7 and c_2c_1 ) or (c_27 and c_3c_1 )} ○ #Ω=52×51×50=(52)_3 ○ Note: (n)_k=n!/(n−k)! • Example: 431 game with replacement ○ Ω={(c_1,c_2,c_3 )│■8(c_1 is my card@c_2 is your first card@c_3 is your second card)} ○ W_7={(c_1,c_2,c_3 )∈Ω| (c_2≥7 and c_2c_1 ) or (c_27 and c_3c_1 )} ○ #Ω=〖52〗^3 Different Types of Random Experiments • S={1,…,n} • Sampling with replacement where order matters ○ Ω=S^k={(s_1,…,s_k )|s_i∈S} ○ #Ω=n^k • Sampling without replacement where order matters ○ Ω={(s_1,…,s_k )|s_i∈S and ∀i≠j:s_i≠s_j } ○ #Ω=n(n−1)⋯(n−k+1)=n!/(n−k)!=(n)_k • Sampling without replacement where order is irrelevant ○ Ω={A⊆S|#A=k}
Read More >>

Math 375 – 9/11

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Field • A field F is a set together with 2 binary operations • +, × (− optional) that satisfies the following: ○ a+b=b+a ○ (a+b)+c=a+(b+c) ○ a×b=b×a ○ (a×b)×c=a×(b×c) ○ a×(b+c)=a×b+a×c ○ There is a special element O, such that a+O=a ○ There is a special element 1, such that 1×a=a ○ For all a, there is a b, such that a+b=0 ○ For any a≠O, there is a b, such that a×b=1 ○ Optional:1≠O, O≠1 • Example ○ F={0,1} ○ +≔{█(0+0=0@0+1=1@1+1=0)┤ ○ ×≔{█(0×0=0@0×1=0@1×1=1)┤ • Example ○ F={0,1,2} ○ +≔{█(0+0=0@0+1=1@0+2=2@1+1=2@1+2=0@2+2=1)┤ ○ ×≔{█(0×0=0@0×1=0@0×2=0@1×1=1@1×2=2@2×2=1)┤ Vector Space • A vector space V(over F) is a set together with binary operations • {█(+:V+V→V@×:F×V→V)┤, such that ○ F is a field ○ u+v=v+u, ∀u,v∈V ○ (u+v)+w=v+(u+w), ∀u,v,w∈V ○ There is a 0 and vector 0 ⃗, such that § ∀u,v∈V, ∀a,b∈F § u+0 ⃗=u § 0×u=0 ⃗ § a×0 ⃗=0 ⃗ § (a×b)×u=a×(b×u) § (a+b)×u=a×u+b×u § a(u+v)=a×u+a×v § u+(−1)u=(1+(−1))×u=0×u=0 ⃗
Read More >>

Math 375 – Homework 1

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>
  • 1
  • …
  • 12
  • 13
  • 14
  • 15

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP