Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Math 375

Home / Mathematics / Notes / Math 375 / Page 8

Math 375 – 10/25

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • T:R3→R2 with T defined as ○ T(i)=(0,0) ○ T(j)=(1,1) ○ T(k)=(1,−1) • Find the matrix for normal basis ○ M(T,{i,j,k},{i,j})=[■8(0&1&1@0&1&−1)] • Find the matrix using (█(1@1)),(█(1@2)) as the basis for R2 ○ M(T,{i,j,k},{(█(1@1)),(█(1@2))})=[■8(1&1@1&2)]^(−1) [■8(0&1&1@0&1&−1)]=[■8(0&1&3@0&0&−2)] • Find bases for R3 and R2 so that the matrix is diagonal ○ M(T,{(█(0@1/2@1/2)),(█(0@1/2@−1/2)),(█(1@0@0))},{i,j})=[■8(1&0&0@0&1&0)] ○ M(T,{j,k,i},{T(i),T(k)})=[■8(1&0&0@0&1&0)] Question 2 • Let T: R2→R2 be an abitrary linear map. Can one choose a basis (v_1,v_2) on the domain and a basis (w_1,w_2) on the codomain such that the matrix of T with respect to these bases is diagonal? ○ Yes ○ Rank 0: [■8(0&0@0&0)] ○ Rank 1: [■8(1&0@0&0)] ○ Rank 2: [■8(1&0@0&1)] • Can one choose a basis (v_1,v_2) on both the domain and codomain -- the same basis on both -- such that the matrix of T is diagonal? ○ No ○ T(x,y)=(y,0) cannot be diagonal ○ M(T)=[■8(0&1@0&0)]
Read More >>

Math 375 – 10/24

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Matrix Representation of Linear Transformation • Definition ○ T:V→W ○ {e_1,e_2…e_n }:basis for V ○ {f_1,f_2…f_n }:basis for W ○ matrix(T,{e_k },{f_l })=m(T)=[■8(T_11&⋯&T_1n@⋮&⋱&⋮@T_m1&⋯&T_mn )] • Example ○ {■(Te_1=T_11 f_1+…+T_m1 f_m@Te_2=T_12 f_1+…+T_m2 f_m@⋮@Te_n=T_1n f_1+…+T_mn f_m ) ┤a Algebra of Linear Transformations vs. Algebra of Matrices • Comparison Linear Transformations Matrices T+S m(T+s)=m(T)+m(S) c⋅T m(cT)=c⋅m(T) S∘T m(S∘T)=m(S)⋅m(T) • Proof: m(S∘T)=m(S)m(T) ○ Setup § T:U→V, S:V→W § {e_1…e_n }: basis of U § {f_1…f_m }: basis of V § {g_1…g_k }: basis of W ○ Let m(R)=m(S∘T), where R=S∘T ○ m(T) is defined by § {■(Te_1=T_11 f_1+…+T_m1 f_m@Te_2=T_12 f_1+…+T_m2 f_m@⋮@Te_n=T_1n f_1+…+T_mn f_m ) ┤ ○ m(S) is defined by § {■(Sf_1=S_11 g_1+…+S_k1 g_k@Sf_2=S_12 g_1+…+S_k2 g_k@⋮@Sf_m=S_1m g_m+…+S_km g_k ) ┤ ○ m(R) is defined by § {■(Re_1=R_11 e_1+…+R_k1 g_k@Re_2=R_12 e_1+…+R_k2 g_k@⋮@Re_n=R_1n e_1+…+R_kn g_k ) ┤ ○ R_ij=Coefficient of g_i in 〖Re〗_j=Coefficient of g_i in (S∘T) e_j ○ Expanding (S∘T) e_j, we have § (S∘T) e_j=S(〖Te〗_j ) § =S(T_1j f_1+T_2j f_2+…+T_mj f_m ) § =T_1j⋅〖Sf〗_1+T_2j⋅〖Sf〗_2+…+T_mj⋅〖Sf〗_m § =T_1j (S_11 g_1+…+S_k1 g_k )+…+T_mj (S_1m g_1+…+S_km g_k ) ○ Terms containing g_i § T_1j S_i1 g_i+T_2j S_i2 g_i+…+T_mj S_im g_i § =(S_i1 T_1j+S_i2 T_2j+…+S_im T_mj ) g_i ○ Therefore § R=(R_ij )_(i,j=1)^(n,k)=(S_i1 T_1j+S_i2 T_2j+…+S_im T_mj )_(i,j=1)^(n,k) § m(S)m(T)=[■8(S_11&⋯&S_1m@⋮&⋱&⋮@S_k1&⋯&S_km )]×[■8(T_11&⋯&T_1n@⋮&⋱&⋮@T_m1&⋯&T_mn )] § =(S_i1 T_1j+S_i2 T_2j+…+S_im T_mj )_(i,j=1)^(n,k) § ⇒m(S∘T)=m(S)m(T) Matrix Multiplication • Example ○ V=W=R2 with standard basis ○ T=rotation by θ § m(T)=[■8(cos⁡〖θ 〗&−sin⁡θ@sin⁡θ&cos⁡〖θ 〗 )] ○ S=rotation by φ § m(S)=[■8(cos⁡〖φ 〗&−sin⁡φ@sin⁡φ&cos⁡〖φ 〗 )] ○ S=rotation by θ+φ § m(S)m(T) § =[■8(cos⁡〖φ 〗 cos⁡θ−sin⁡φ sin⁡θ&〖−sin〗⁡θ cos⁡φ−sin⁡φ cos⁡θ@sin⁡θ cos⁡φ+sin⁡φ cos⁡θ&cos⁡〖φ 〗 cos⁡θ−sin⁡φ sin⁡θ )] § =[■8(cos⁡〖(θ+φ) 〗&−sin⁡(θ+φ)@sin⁡(θ+φ)&cos⁡〖(θ+φ) 〗 )] § =m(ST) § Therefore m(ST)=m(S)m(T) • Example: T≠0, but T^2=0 ○ T=[■8(0&1@0&0)], T(x,y)=(0,x) ○ ⇒T^2=T×T=[■8(0&1@0&0)]×[■8(0&1@0&0)]=[■8(0&0×1+1×0@0&0)]=[■8(0&0@0&0)] ○ Note: T≠0, but T^2=0 • Example: ST≠TS ○ T=[■8(0&1@0&0)], S=[■8(0&0@1&0)] ○ TS=[■8(0&1@0&0)][■8(0&0@1&0)]=[■8(1&0@0&0)] ○ ST=[■8(0&0@1&0)][■8(0&1@0&0)]=[■8(0&0@0&1)] ○ Note:ST≠TS ○ Therefore matrix multiplication is not commutative • Example ○ S,T:V→V, (or S,T are square matrice) ○ (S+T)^2=(S+T)(S+T)=S^2+ST+TS+T^2 ○ Note: (S+T)^2≠S^2+2TS+T^2≠S^2+2ST+T^2 Solving Linear Equations using Matrix • Matrix representation of Linear Equations ○ {█(a_11 x_1+a_12 x_2+…+a_1n x_n=y_1@a_21 x_1+a_22 x_2+…+a_2n x_n=y_2@⋮@a_m1 x_1+a_m2 x_2+…+a_mn x_n=y_m )┤⇔[■8(a_11&⋯&a_1n@⋮&⋱&⋮@a_m1&⋯&a_mn )][■8(x_1@⋮@x_n )]=[■8(y_1@⋮@y_m )] ○ Let A=[■8(a_11&⋯&a_1n@⋮&⋱&⋮@a_m1&⋯&a_mn )], x=[■8(x_1@⋮@x_n )], y=[■8(y_1@⋮@y_m )] ○ Then the linear equations could by represented as Ax=y • Row reduction ○ Multiply an equation with c≠0 ○ Switch equations ○ Subtract one equation from anther • Example ○ Question § {█(x_1+x_2+x_3=5@2x_1−x_2+x_3=7)┤ ○ Convert into Matrix § [■8(1&1&1@2&−1&1) │ ■8(5@7)]⇒[■8(1&1&1@0&1&1/3) │ ■8(5@1)]⇒[■8(1&0&2/3@0&1&1/3) │ ■8(4@1)] ○ Substitute back § {█(x_1=4−2/3 x_3@x_2=1−1/3 x_3@x_3∈R┤ ○ Let x_3=3t, then the general solution is § [■8(4−2t@1−t@3t)], t∈R
Read More >>

Math 375 – 10/23

  • Oct 31, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Given ○ Let V and W be finite-dimensional vector spaces. • Proof ○ There exists a surjective linear map f:V→W if and only if dim⁡W≤dim⁡V • Prove: ∃surjective linear map f:V→W ⇒ dim⁡W≤dim⁡V ○ dim⁡V=dim⁡N(f)+dim⁡R(f) ○ f is surjective ⇒dim⁡R(f)=dim⁡W ○ dim⁡〖V=dim⁡〖N(f)〗+dim⁡W 〗 ○ dim⁡V≥dim⁡W • Prove: dim⁡W≤dim⁡V⇒∃surjective linear map f:V→W ○ {e_1,…,e_n }: basis for V ○ {g_1,…,g_m }: basis for W ○ Construct linear map f where § f(e_1 )=g_1 § f(e_2 )=g_2 § ⋮ § f(e_m )=g_m § f(e_(m+1) )=0 § f(e_(m+2) )=0 § ⋮ § f(e_n )=0 ○ Obviously, f is surjective Question 2 • Given ○ Define a linear map T:R3→R2 as follows ○ T(i)=(0,0), T(j)=(1,1), T(k)=(1,−1) ○ where i,j,k is the standard basis of R3 • Question (a) ○ Compute T(4i−j+k) and determine the nullity and rank of T ○ T(4i−j+k)=4T(i)−T(j)+T(k)=4(0,0)−(1,1)+(1,−1)=(0,−2) ○ R(T)={c_1 T(i)+c_2 T(j)+c_3 T(k)│c_1,c_2,c_3∈R=R2 ○ rank=dim⁡R(T)=2 ○ nullity=dim⁡〖R3 〗−rank=1 • Question (b) ○ Determine the matrix of T ○ m(T)=(■8(0&1&1@0&1&−1)) • Question (c) ○ Determine the matrix of T using the same basis on the domain ○ and the basis (1,1), (1,2) on the codomain ○ m(T)=(■8(1&1@1&2))^(−1) (■8(0&1&1@0&1&−1))=(■8(0&1&3@0&0&−2))
Read More >>

Math 375 – Homework 7

  • Oct 26, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 10/19

  • Oct 27, 2017
  • Shawn
  • Math 375
  • No comments yet
Matrix Representation of Linear Transformations • Given ○ Linear Transformation T:V→W ○ Basis for V: {e_1,…,e_n } ○ Basis for W:{f_1,…,f_m } • Let x∈V, y=T(x) then ○ {█(x=x_1 e_1+x_2 e_2+…+x_n e_n@y=y_1 f_1+y_2 f_2+…+y_m f_m )┤ • T(e_k )∈W⇒T(e_k ) is a linear combination of {f_1,…,f_m } i.e. ○ T(e_k )=∑_(i=1)^m▒〖T_ik f_i 〗=T_1k f_1+T_2k f_2+…+T_mk f_m • Suppose we know T_ik (i∈{1,…m},k∈{1,…,n}), then ○ T(x)=T(x_1 e_1+…+x_n e_n ) ○ =x_1 (T_11 f_1+…+T_m1 f_m )+…+x_n (T_1n f_1+…+T_mn f_m ) ○ =(T_11 x_1+…+T_1n x_n ) f_1+…+(T_m1 x_1+…+T_mn x_n ) f_m ○ =y_1 f_1+…+y_m f_m ○ where y_i=T_i1 x_1+…+T_1n x_n ○ Note: T(e_k )=T_1k f_1+T_2k f_2+…+T_mk f_m • The matrix of the linear transformation T:V→W is ○ Mat(T,{e},{f})=[■8(T_11&⋯&T_1n@⋮&⋱&⋮@T_m1&⋯&T_mn )] ○ with respect to the basis {e_1,…,e_n } and {f_1,…,f_m } of V and W • Example ○ V=W=R2 ○ e,f: standard basis for V and W ○ T: rotation by 90° ○ Te_1=0⋅f_1+1⋅f_2 ○ Te_2=(−1)⋅f_1+0⋅f_2 ○ mat(T)=[Te_1,Te_2 ]=[■8(0&−1@1&0)] Matrix Multiplication • Motivation ○ Consider the composition of linear transformations T and S ○ U→┴T V→┴S W ○ basis for U: {e_1,…,e_k } ○ basis for V: {f_1,…,e_l } ○ basis for W: {g_1,…,e_m } ○ mat(ST)=mat(S)⋅mat(T) • Definition ○ A_(m×n) B_(n×q)=[■8(a_11&⋯&a_1n@⋮&⋱&⋮@a_m1&⋯&a_mn )][■8(b_11&⋯&b_1q@⋮&⋱&⋮@b_n1&⋯&b_nq )] ○ =[■8(a_11 b_11+…+a_1n b_n1&⋯&a_11 b_1q+…+a_1n b_nq@⋮&⋱&⋮@a_m1 b_11+…+a_mn b_n1&⋯&a_m1 b_1q+…+a_mn b_nq )]_(m×q) • Example ○ T: rotation by 90° ○ mat(T)=[■8(0&−1@1&0)] ○ {█(T^2 e_1=−f_1=(−1)⋅f_1+0⋅f_2@T^2 e_2=−f_2=0⋅f_1+(−1)⋅f_2 )┤⇒mat(T^2 )=[■8(−1&0@0&−1)] ○ (mat(T))^2=[■8(0&−1@1&0)][■8(0&−1@1&0)]=[■8(−1&0@0&−1)] ○ Therefore mat(T^2 )=(mat(T))^2 VEIR: " either Wilkin Their in E € is + Ten
Read More >>
  • 1
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • …
  • 15

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP