Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Notes

Home / Notes / Page 49

9.1 – Gravity & Orbits

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
Newton's Law of Universal Gravitation Gravitational Field Strength Gravitational Field of a Hollow Shell • Inside a hollow sphere, the gravitational field is 0. Outside a hollow sphere, you can treat the sphere as if it's entire mass was concentrated at the center, and then calculate the gravitational field Gravitational Field Inside a Solid Shell • Outside a solid sphere, treat the sphere as if all the mass is at the center of the sphere. Inside the sphere, treat the sphere as if the mass inside the radius is all at the center. Only the mass inside the
Read More >>

Math 375 – 12/6

  • Dec 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Question ○ Use gradient to approximate|■8(sin⁡(π/2+0.1)&ln⁡(1.1)@3&√4)| ○ Let f(x,y,z)=|■8(sin⁡x&ln⁡y@3&√z)|, then ○ f(π/2,1,4)=2 ○ Note ○ Near x=a, f(x)≈f(a)+∇f(a)(x−a) ○ Calculate Gradient ○ ∇f(x,y,z)=[█(f_x@f_y@f_z )]=[█(√z cos⁡x@−3∕y@sin⁡x∕(2√z) )] ○ ∇f(π/2,1,4)=[█(0@−3@1∕4)] ○ Approximation ○ f((π/2+0.1), (1+0.1), (4+0.1)) ○ ≈f(π/2,1,4)+∇f(π/2,1,4)(x−a) ○ =2+[█(0@−3@1∕4)]⋅[█(0.1@0.1@0.1)] ○ =2−0.3+0.025 ○ =1.725
Read More >>

Math 375 – Homework 12

  • Dec 05, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – Matrix Algebra Review

  • Dec 09, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Math 375 – 12/5

  • Dec 05, 2017
  • Shawn
  • Math 375
  • No comments yet
Example • f:R2→R • f(x,y)={■8(xy/(x^2+y^2 )&(x,y)≠(0,0) @0&x=y=0)┤ • Counterplot • Graph • Partial Derivative ○ ∂f/∂x,∂f/∂y exist at all points in R2 including the origin ○ When (x,y)≠(0,0), we have x^2+y^2≠0 § So xy/(x^2+y^2 ) is differentiable as function of x ○ When (x,y)=(0,0) § ∂f/∂x=lim_(h0)⁡〖(f(x+hy)−f(x,y))/h=lim_(h0)⁡〖(⏞(f(h0) )┴0−⏞(f(0,0) )┴0)/h=lim_(h0)⁡〖0/h=0 § Similarly ∂f/∂y=0 ○ Note § Both ∂f/∂x,∂f/∂y exist, but f is not differentiable everywhere § There we need a different definition for differentiable Differentiable • Definition ○ f:Rn→R is a differentiable at a∈Rn if ○ f(a+v)=⏟(f(a)+T_a (v) )┬(linear approximation)+⏟(‖v‖E(a,v) )┬(error term) ○ Where § T_a=Rn→R is a linear map § lim_(v→0)⁡E(a,v)=0 ○ Alternative formulation § lim_(v→0)⁡〖(f(a+v)−f(a)−T_a (v))/‖v‖ 〗=0 § Where E(a,v)=(f(a+v)−f(a)−T_a (v))/‖v‖ ○ Find T_a (v) § T_a (v)=T_a (v_1 e_1+…+v_n e_n )=v_1 ⏞(T_a (e_1 ) )┴(c_1 )+…+v_n ⏞(T_a (e_n ) )┴(c_n ) § For c_1=T_a (e_1 ), choose v=he_1 § lim_(h0)⁡〖(f(a+h�_1 )−f(a)−T_a (h�_1 ))/h=0 § ⇒lim_(h0)⁡((f(a_1+ha_2,…,a_n )−f(a_1,a_2,…,a_n ))/h(T_a (h�_1 ))/h=0 § ⇒∂f/(∂x_1 ) (a_1,…,a_n )−lim_(h0)⁡〖(c_1 h/h=0 § ⇒∂f/(∂x_1 ) (a_1,…,a_n )−c_1=0 § ⇒∂f/(∂x_1 ) (a_1,…,a_n )=c_1 § Similarly c_k=∂f/(∂x_k ) (a) Total Derivative • Definition ○ If f:Rn→R is differentiable at a, then ○ T_a (v)=v_1 ∂f/(∂x_1 ) (a)+…+v_n ∂f/(∂x_n ) ○ Here, the linear map T_a:Rn→R is called the total derivative of f at a • Alternative notations ○ f^′ (a) ○ df_a ○ Df_a ○ Df(a) • Theorem ○ If f is differentiable at a then f is continuous at a • Proof ○ We want to show lim_(h0)⁡f(a+v)=f(a) § lim_(v→0)⁡〖f(a+v)−f(a)〗 § =lim_(v→0)⁡(f(a+v)−f(a)−T_a (v)+T_a (v)) § =lim_(v→0)⁡(‖v‖ (f(a+v)−f(a)−T_a (v))/‖v‖ +T_a (v)) § =lim_(v→0)⁡(‖v‖)⋅lim_(v→0)⁡((f(a+v)−f(a)−T_a (v))/‖v‖ )+lim_(v→0)⁡(T_a (v)) § =0⋅0+0 § =0 ○ Therefore lim_(h0)⁡f(a+v)=f(a) ○ Note § ‖T_a (v)‖=‖c_1 v_1+…+c_n v_n ‖=‖c⋅v‖≤‖c‖⋅‖v‖ § So ‖T_a (v)‖≤‖c‖⋅‖v‖ § If v→0, then T_a (v)→0 • Properties of differentiable functions ○ Differentiable ⇒ Continuous ○ Differentiable ⇒ Partial derivative exist • Example ○ For f(x,y)={■8(xy/(x^2+y^2 )&(x,y)≠(0,0) @0&x=y=0)┤ ○ Partial derivatives exist at (0,0), but not continuous at (0,0) ○ Therefore f(x,y) is NOT DIFFERENTIABLE • Therorem ○ If ∂f/(∂x_1 ),…,∂f/(∂x_n ) exist and are continuous at a ○ Then f is differentiable at a, and the total derivative is given below ○ T_a (v)=v_1 ∂f/(∂x_1 ) (a)+…+v_n ∂f/(∂x_n ) (a) Continuity • Definition ○ f is contunuous at x=a if ○ lim_(x→0)⁡f(x)=f(a) ○ lim_(‖x−a‖→0)⁡‖f(x)−f(a)‖=0 • Example ○ For f(x,y)=xy/(x^2+y^2 ), (x,y)≠(0,0) ○ ∂f/∂x,∂f/∂y exist and continuous when (x,y)≠(0,0) ○ ⇒f Fréchet differentiable everywhere except at (0,0) Chain Rule • Definition ○ g(t)=f(x_1 (t),…,x_n (t)) ○ dg/dt=df(x_1 (t),…,x_n (t))/dt=∂f/(∂x_1 ) (dx_1)/dt+…+∂f/(∂x_n ) (dx_n)/dt • Proof ○ Let a=x(t)=(x_1 (t),…,x_n (t)) ○ Let v=x(t+h−x(t), then lim_(h0)⁡v=0 ○ lim_(h0)⁡〖(f(x(t+h)−f(x(t)))/h ○ (To be continued)
Read More >>
  • 1
  • …
  • 47
  • 48
  • 49
  • 50
  • 51
  • …
  • 84

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP